skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tang, Changxin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. One of the major challenges towards understanding and further utilizing the properties and functional behaviors of grain boundaries (GB) is the complexity of general GBs with mixed tilt and twist character. Here, we report the correlations between mixed GBs and their tilt and twist components in terms of structure, energy and stress field by computationally examining 7440 silicon GBs. Such correlations indicate that low angle mixed GBs are formed through the reconstruction mechanisms between their superposed tilt and twist components, which are revealed as the energetically favorable dissociation, motion and reaction of dislocations and stacking faults. In addition, various complex disconnection network structures are discovered near the conventional twin and structural unit GBs, implying the role of disconnection superposition in forming high angle mixed GBs. By unveiling the energetic correlation, an extended Read-Shockley model that predicts the general trends of GB energy is proposed and confirmed in various GB structures across different lattices. Finally, this work is validated in comparison with experimental observations and first-principles calculations. 
    more » « less